Showing posts with label LightOJ. Show all posts
Showing posts with label LightOJ. Show all posts

Wednesday, March 22, 2017

Solution of Light OJ 1109 - False Ordering

/*  Bismillahir Rahmanir Rahim
    Saving number of divisor for every number and
    sorting using structure.
*/
#include<bits/stdc++.h>
using namespace std;
int t, n, i, j, cs=1;

struct all{
    int num;
    int ds;
}one[1001];

bool comp(all f, all s){ // sort of structure
    if(f.ds==s.ds) return f.num>s.num;
    else return f.ds<s.ds;
}

void cal(){  // main calculation for all numbers
    for(i=1; i<=1000; i++){
        one[i].num=i;
        one[i].ds=1;
    }
    for(i=1; i<=500; i++){
        for(j=2*i; j<=1000; j+=i){
            one[j].ds=one[j].ds+1;
        }
    }
}

int main(){
    cal();
    sort(one, one+1001, comp);
    cin>>t;
    while(t--){
        cin>>n;
        cout<<"Case "<<cs++<<": "<<one[n].num<<endl;
    }
    return 0;
}

Saturday, March 18, 2017

Solution of Light OJ 1099 - Not the Best


/*  Bismillahir Rahmanir Rahim
    Solution-Using Dijkstra.
    Calculate shortest path and second shortest path for each node
*/
#include<bits/stdc++.h>
#define fi(n, m) for(int i=n; i<=m; i++)
#define ll long long
using namespace std;
vector<ll>vt[5009], cost[5009];
ll n, en, d1[5009], d2[5009], sz; //d2[]=second shortest, d1[]=shortest

struct node{
    ll u, w;
    node(ll a, ll b){
        u=a, w=b;
    }
    bool operator < (const node & p)const{
        return p.w<w;
    }
};

void dijkstra(int st){
    priority_queue<node>q;
    q.push(node(st, 0));
    fi(1, n){d1[i]=30000000, d2[i]=30000000;}
    d1[st]=0;
    while(!q.empty()){
        node top=q.top();
        q.pop();
        int u=top.u;
        sz=vt[u].size();
        fi(0, sz-1){
            int v=vt[u][i];
            int uu=cost[u][i]; // mind it
            if(d1[u]+uu<d1[v]){
                ll temp=d1[v];
                d1[v]=d1[u]+uu;
                d2[v]=min(temp, min(d2[v], min(d2[u]+uu, d1[u]+3*uu)));
                q.push(node(v, d1[v]+d2[v]));
            }
            else if(d1[u]+uu<d2[v] && (d1[u]+uu)>d1[v]){
                d2[v]=d1[u]+uu;
            }
            else{
                d2[v]=min(d2[v], min(d2[u]+uu, d1[u]+3*uu));
            }
        }
    }
}

int main(){
    int t, cs=1, st, e, u, v, w, nn, ans;
    cin>>t;
    while(t--){
        cin>>n>>e;
        fi(1, e){
            cin>>u>>v>>w;
            vt[u].push_back(v);
            vt[v].push_back(u);
            cost[u].push_back(w);
            cost[v].push_back(w);
        }
        ll back=100000009; // Its for a special case, given bellow
        fi(0, vt[1].size()-1){
            back=min(back, 2*cost[1][i]);
        }
        dijkstra(1);
        back=d1[n]+back;
        cout<<"Case "<<cs++<<": "<<min(back, d2[n])<<endl;
        fi(0, n){
            vt[i].clear(); cost[i].clear();
        }
    }
    return 0;
}
/* Special Case
Input:
    1
    4 5
    1 2 3
    2 3 7
    3 4 4
    1 2 4
    4 1 4
Output:
    Case 1: 10
*/

Tuesday, March 14, 2017

Solution of Light OJ 1257 - Farthest Nodes in a Tree (II)

We may solve using BFS of DFS. Both solutions are given.
Using BFS:
/*  Bismillahir Rahmanir Rahim
    Solution-Using BFS
Find the farthest two nodes and calculate all nodes distance
from both farthest nodes and take the maximum for each node
*/
#include<bits/stdc++.h>
#define fi(n, m) for(int i=n; i<=m; i++)
#define fii(i, n, m) for(int i=n; i<=m; i++)
using namespace std;
vector<int>vt[30001], cost[30001];
int n, dis[30001], dis1[30001], a1, a2, p, cnt=0;

void bfs(int st){
    fi(0, n) dis[i]=-1;
    int mx=-1;
    queue<int>q;
    q.push(st);
    dis[st]=0;
    while(!q.empty()){
        int u=q.front();
        q.pop();
        if(mx<dis[u]){
            mx=dis[u];
            p=u;
        }
        for(int j=0; j<vt[u].size(); j++){
            int v=vt[u][j];
                if(dis[v]==-1){
                    dis[v]=dis[u]+cost[u][j];
                    q.push(v);
                }

        }
    }
}

void bfs1(int st){
    fi(0, n) dis1[i]=-1;
    queue<int>q;
    q.push(st);
    dis1[st]=0;
    while(!q.empty()){
        int u=q.front();
        q.pop();
        for(int j=0; j<vt[u].size(); j++){
            int v=vt[u][j];
                if(dis1[v]==-1){
                    dis1[v]=dis1[u]+cost[u][j];
                    q.push(v);
                }
        }
    }
}

int main()
{
    int t, cs=1, u, v, w;
    scanf("%d", &t);
    while(t--){
        scanf("%d", &n);
        fi(1, n-1){
            scanf("%d%d%d", &u, &v, &w);
            vt[u].push_back(v);
            vt[v].push_back(u);
            cost[u].push_back(w);
            cost[v].push_back(w);
        }
        bfs(0); // find an ending point of farthest path
        a1=p;
// find another ending point a2 and distance from a1 (dis[])
        bfs(a1); 
        a2=p;
        bfs1(a2); //calculating distance from a2(dis1[])
        printf("Case %d:\n", cs++);
        fi(0, n-1){
            printf("%d\n", max(dis[i], dis1[i]));
            vt[i].clear(); cost[i].clear();
        }
    }
    return 0;
}


Using DFS:

/*  Bismillahir Rahmanir Rahim
    Solution-Using DFS
Find the farthest two nodes and calculate all nodes distance
from both farthest nodes and take the maximum for each node
*/
#include<bits/stdc++.h>
#define fi(n, m) for(int i=n; i<=m; i++)
#define fii(i, n, m) for(int i=n; i<=m; i++)
using namespace std;
vector<int>vt[30009], cost[30009];
int dis[30009], dis1[30009], vis[30009], n, p, mx;

void dfs(int at){
    if(vis[at]) return ;
    else{
        vis[at]=1;
        if(mx<dis[at]){
            mx=dis[at];
            p=at;
        }
        for(int j=0; j<vt[at].size(); j++){
            int v=vt[at][j];
            if(dis[v]==-1){
                dis[v]=dis[at]+cost[at][j];
                dfs(v);
            }
        }
    }
}

void dfs1(int at){
    if(vis[at]) return ;
    else{
        vis[at]=1;
        for(int j=0; j<vt[at].size(); j++){
            int v=vt[at][j];
            if(dis1[v]==-1){
                dis1[v]=dis1[at]+cost[at][j];
                dfs1(v);
            }
        }
    }
}

int main(){
    int t, cs=1, u, v, w, a1, a2;
    scanf("%d", &t);
    while(t--){
        scanf("%d", &n);
        fi(1, n-1){
            scanf("%d%d%d", &u, &v, &w);
            vt[u].push_back(v);
            vt[v].push_back(u);
            cost[u].push_back(w);
            cost[v].push_back(w);
        }
        fi(0, n+1){vis[i]=0; dis[i]=-1;}
        mx=0, dis[0]=0;
        dfs(0); // find an ending point of farthest path
        a1=p, mx=0;
        fi(0, n+1){vis[i]=0; dis[i]=-1;}
        dis[a1]=0;
// find another ending point a2 and distance from a1(dis[])
        dfs(a1);
        a2=p;
        fi(0, n+1){vis[i]=0; dis1[i]=-1;}
        dis1[a2]=0;
        dfs1(a2);//calculating distance from a2(dis1[])
        printf("Case %d:\n", cs++);
        fi(0, n-1){
            printf("%d\n", max(dis[i], dis1[i]));
            vt[i].clear(); cost[i].clear();
        }
    }
    return 0;
}