/* بسم الله الرحمن الرحيم
Solution - using "Dijkstra".
Calculate the shortest path for all node from both starting
node and ending node then mx=max(mx, (d1[i]+d2[i]))
*/
#include<bits/stdc++.h>
#define fi(n, m) for(int i=n; i<=m; i++)
#define fd(n, m) for(int i=n; i>=m; i--)
using namespace std;
vector<int>vt[101], cost[101];
int d1[101], d2[101], n;
struct node{
int u, w;
node(int a, int b){
u=a, w=b;
}
bool operator < (const node & p)const{
return p.w<w;
}
};
void dijkstra(int st){
priority_queue<node>q;
fi(0, n-1)d1[i]=100009;
d1[st]=0;
q.push(node(st, 0));
while(!q.empty()){
node top=q.top();
q.pop();
int u=top.u;
int sz=vt[u].size();
fi(0, sz-1){
int v=vt[u][i];
if(d1[u]+cost[u][i]<d1[v]){
d1[v]=d1[u]+cost[u][i];
q.push(node(v, d1[v]));
}
}
}
}
void ddijkstra(int st){
priority_queue<node>q;
fi(0, n-1) d2[i]=100009;
d2[st]=0;
q.push(node(st, 0));
while(!q.empty()){
node top=q.top();
q.pop();
int u=top.u;
int sz=vt[u].size();
fi(0, sz-1){
int v=vt[u][i];
if(d2[u]+cost[u][i]<d2[v]){
d2[v]=d2[u]+cost[u][i];
q.push(node(v, d2[v]));
}
}
}
}
int main(){
int t, u, v, e, st, cs=1, en, a1, a2, mx;
cin>>t;
while(t--){
mx=0;
cin>>n>>e;
fi(0, e-1){
cin>>u>>v;
vt[u].push_back(v);
vt[v].push_back(u);
cost[u].push_back(1);
cost[v].push_back(1);
}
cin>>st>>en;
/* input end */
dijkstra(st);
ddijkstra(en);
fi(0, n-1) mx=max(mx, (d1[i]+d2[i]));
cout<<"Case "<<cs++<<": "<<mx<<endl;
fi(0, n-1){
vt[i].clear();
cost[i].clear();
}
}
return 0;
}
|
Saturday, February 25, 2017
Solution of Light OJ 1174-Commandos
Subscribe to:
Post Comments (Atom)
-
#include<bits/stdc++.h> #define ll long long using namespace std ; ll n , k , t_case ; ll bigmod ( ll b , ll p , ll m...
-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3...
-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ...
No comments:
Post a Comment